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1. Greek mathematics: Autochthonous or inspired from abroad?

Herodotos (Histories II, 109 [1920, I, 396–398]) and numerous other Greek
authors tell that geometry was first created by Egyptian surveyors (“rope
stretchers”); Proclos [1873, 65], probably borrowing from Eudemos, adds
that “precise knowledge of numbers” (των αριθμων ακριβης γνωσις) was
developed by the Phoenicians. General Greek lore then ascribes to Thales,
Pythagoras and other early Greek mathematicians the import and trans-
formation of this foreign material into a theoretical structure.

How much of this can be relied upon – and how it is to be understood –
is difficult to know; there is no doubt that the Greeks did learn from their
neighbours, and that even the “Pythagorean theorem” was known (if not
exactly as a “theorem”) in Babylonia around 1800 B.C. But apart from a
fragment from the hand of Hippocrates of Chios which may be genuine
but is more likely to be Eudemos’s paraphrase [cf. Knorr 1986, 38f.; Høyrup
1990b, 214], only a few hints in Plato and scattered phrases in the Corpus
aristotelicum give us the words of Greek mathematicians prior to Autolycos
(c. 300 B.C.). We may still hold that a conceptual import must have
involved “translation” at least in some general sense, but the source
material is clearly insufficient to make such a claim informative.

A step toward informed and informative discussion was made by
Neugebauer [1936, 250], who spoke explicitly of “translation”:

Die Antwort auf [...] die Frage nach der geschichtlichen Ursache der Grundauf-
gabe der gesamten geometrischen Algebra [i.e., the application of an area with
deficiency or excess, Elements II.5–6, the core of the book], kann man heute
vollständig geben: sie liegt einerseits in der aus der Entwicklung der irrationalen
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Größen folgenden Forderung der Griechen, der Mathematik ihre Allgemein-
gültigkeit zu sichern durch Übergang vom Bereich der rationalen Zahlen zum
Bereich der allgemeinen Größenverhältnisse, andererseits in der daraus
resultierenden Notwendigkeit, auch die Ergebnisse der vorgriechischen “algebrai-
schen” Algebra zu übersetzen.

Hat man das Problem in dieser Weise formuliert, so ist alles Weitere
vollständig trivial und liefert den glatten Anschluß der babylonischen Algebra an
die Formulierungen bei Euklid.

Two ideas go into these formulations: That the Greek discovery of
incommensurability would have provoked a “foundation crisis” in Greek
geometry – an idea set forth by Hasse and Scholz [1928] – by disproving
a Pythagorean identification of geometric entities and integer numbers;
and Neugebauer’s and his collaborators’ discovery that a number of
Babylonian clay tablets (most of them from the second half of the Old
Babylonian period, 1800–1600 B.C., some from the Seleucid era, 3rd and
2nd c. B.C.) contain problems which correspond closely to modern mixed
second-degree-equations (i.e., equations of the types αx2+βx = γ, α, β, and
γ positive or negative), but which are often formulated in terms closer to
Elements II.5–6, viz. as dealing with rectangles for which the area and the
sum of the sides or their difference are given.

For a while, Neugebauer’s thesis was generally accepted; serious
discussion was only started by Arpád Szabó and Sabetai Unguru. Szabó
[1969, 455ff.] formulated two objections: (1) that the early Greek geometers
are not likely to have known about the contents of clay tablets they could
not read; (2) that not only the aims of Greek and Babylonian mathematics
were totally different (the finding of theorems, and the construction of
figures, versus the finding of numerical solutions) but also the
conceptualizations of the subject-matter – whereas Babylonian “algebra”
as understood by Neugebauer was a purely numerical discipline in spite
of its use of a geometrical terminology, Elements II are geometrical through
and through. He did not find that the postulated Grundlagenkrise was able
to bridge this difference, and thought it much more likely that the area
geometry of Elements II was an autochthonous development, whose starting
point was similar to the heuristic geometry told about in Plato’s Meno (82B-
85E) – the passage where a slave boy is brought to understand how to
double a square. Unguru [1975; cf. Unguru & Rowe 1981] rejected the idea
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of translation from a numerical algebra even more vehemently, as based
on and entailing a modernizing reading that obscured the nature and aims
of the Greek mathematicians instead of elucidating them.

Figure 1

2. Another reading of Babylonian “alge-
bra”

A new understanding of Babylonian
“algebra” and of its connections to later
traditions has allowed to reassess the Neuge-
bauer thesis. In this interpretation [cf. Høy-
rup 1990a], the “sides” and “areas” of its
problems are understood geometrically, not
as metaphors for numbers and their pro-
ducts; the operations are read as cut-and-
paste transformations of geometric configur-
ations. As an example we may look at Figure
1, configuration (I), which represents two
different problems: Either a rectangle with
known area A, where the difference between
length and width is given, l–w = δ, or a
square (s), where the sum of the area and
δ sides ( (s)+δ s) equals A. In both cases, A
represents the total shaded area. The segment δ is “broken” (bisected) and
the outer part moved (II) so as to “hold” together with the inner part a
square (δ/2) of known area; this quadratic complement (white) is joined
to the shaded gnomon (III), which becomes a square with known area

A+(δ/2)
2, and hence also known side S = . The width w of theA (

δ
2

)2

rectangle (or the side s of the square) is found by removing the semi-
rectangle which was moved downwards in (II), w = S–δ/2, and the length
l of the rectangle by putting it back in its original position, l = S+δ/2. No
formal proof is given, but the procedure is immediately “seen” to be
correct; we may characterize it as “naive”, in contrast to the “critical”
approach of Elements II, to which we shall return. The style of the argument
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is precisely that of the Meno passage. The numerical steps coincide with
those of modern equation algebra – the fact that once caused the moderniz-
ing reading of Neugebauer and others; phrases and conceptual distinctions
made in the texts which did not fit this reading were disregarded or
explained away.

Problems where we know the difference between a square area and
δ sides are solved by means of the same geometric operations, rectangle
problems where the area and the sum of the sides is known by means of
a different but analogous configuration.

3. A practical-geometrical tradition

This algebraic technique was developed to great sophistication in the
Old Babylonian scribe school, but it was not invented there. Its origin seems
to be in an environment of non-scholastic practical geometers (surveyors,
master-builders, etc.). In this – probably Akkadian-speaking – environment,
a number of geometrical riddles seem to have circulated in the late third
millennium B.C. After the collapse of the Neosumerian state around
2000 B.C., when Akkadian became the language of the scribe school, these
riddles were adopted into the curriculum, where they served as the
foundation of a sophisticated mathematical discipline. Around 1600 B.C.,
however, the Old Babylonian scribe school disappeared, as did its
sophisticated mathematics; the “algebra” which turns up in late Babylonian
tablets is closer to the original riddle type than to the refined school
discipline. Nothing positive is known about the transmission channels, but
both the oral teaching of geometrical practitioners’ apprentices and scribe
schools of the Mesopotamian periphery are likely to have played a role.

In the ninth century, the riddles and the cut-and-paste technique turn
up in various Arabic sources: the latter serves in al-Khwārizmı̄’s geometric
proofs for his solutions of second-degree equations; riddles and solution
technique form the bulk of the first chapters of Abū Bakr’s Liber mensuratio-
num (known only in Gerard of Cremona’s 12th-c. Latin translation).

Much of this story has to be reconstructed from indirect evidence –
see [Høyrup 1996]; in particular, combination of the evidence from the
various epochs permits a reconstruction of the basic stock of riddles. If 4s
designates “all four sides” of a square and d the diagonal of a rectangle
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(other symbols as above), a single square gave rise at least to these
problems (α and β stand for given numbers):

s+A = α , 4s+A = α ; A–s = α ;
perhaps 4s–A = α ; probably 4s = A ;

the standard solution appears to have been s = 10 when mathematically
possible. When linguistically possible, the side was mentioned before the
area; since the area is a derived entity, this order agrees with general riddle
style.

Two squares give rise to four problems:
A1+A2 = α, s1±s2 = β ; A1–A2 = α, s1±s2 = β .

For rectangles, these problems occur:
A = α, l±w = β ; A+(l w) = α, l±w = β; A = α, d = β .

The circle (diameter d, perimeter p, area A) gives occasion at least to this
problem:

d+p+A = α .
“Unnatural” coefficients (“twice the area”, “a third of a side”, etc.) appear
to have been avoided; in scribe school texts, on the contrary, they abound.

In practical calculations, two important quasi-algebraic identities seem
to have been used in the late third millennium:

(S+σ) = (S)+ (σ)+2 (S,σ); (S–σ) = (S)–2 (S,σ)+ (σ) .
These formulae facilitate the determination of the areas of squares whose
sides differ by a small amount σ from a round measure S.

4. The several levels of Greek mathematics

Neugebauer’s thesis regards the “scientific” level of Greek geometry,
while Babylonian algebra was the product of a scribe school, where
“mathematics” was always a technique for finding numerical solutions;
this accounts for some of the differences pointed out by Szabó and Unguru,
but does not eliminate their objections. Before asking how the new reading
of the Babylonian texts transforms the picture we should remember that
even the Greek and Hellenistic world had their mathematical practitioners.
Since practitioners, not clay tablets, are the likely sources for the theoretical
geometers, they are important for our argument.

The mathematical practitioners of the classical world are much less
visible in the sources than Euclid, Archimedes and Apollonios. They were,
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indeed, culturally subliminal to such a degree that Byzantine scholars
tended to ascribe all material on practical geometry to Hero, the only name
they knew – and to such a degree that modern historians of mathematics
persevere in speaking of Geometrica as Hero’s work, even though Heiberg
[Hero 1914, xxi] refutes this ascription rather emphatically.

5. Greek geometrical practice

Closer analysis shows that Geometrica as edited by Heiberg is a modern
conglomerate composed from three Byzantine conglomerates which share
little more than a common background in general Near Eastern and
Hellenistic geometrical practice – see [Høyrup 1997]; of particular interest
is chapter 24 in Heiberg’s edition (one of the independent constituents,
itself composite), problem 3 of which runs as follows [Hero 1912, 418, trans.
JH]:

A square surface having the area together with the perimeter of 896 feet. To
get separated [διαχωριζω] the area and the perimeter. I do like this: In general
[καθολικως], place outside [εκτιθημι] the 4 units, whose half becomes 2 feet.
Putting this on top of itself [ποιησον εφ’ εαυτα] becomes 4. Putting together
just this with the 896 becomes 900, whose squaring side [πλευρα τετραγωνικη]
becomes 30 feet. I have taken away underneath (υφαιρεω) the half, 2 feet are
left. The remainder becomes 28 feet. So the area is 784 feet, and let the perimeter
be 112 feet. [...].

This is one of the favourite riddle problems, “the four sides and the area”,
found in an Old Babylonian text, in Abū Bakr, in Fibonacci’s Pratica
geometrie, and still in Pacioli’s Summa de arithmetica. Some of the words are
identifiable as translations: διαχωριζω corresponds to the berûm used in
the same function in Babylonian texts, and καθολικως to semper in
Gherardo’s translation of Abū Bakr. Πλευρα τετραγωνικη corresponds to
the Sumerian í b . s i 8 used in the Babylonian texts and may be a translation
too, but since the Arabic texts use an Indian loan translation (ji_dr, “root”)
we have no direct evidence for the terminology of the tradition as
encountered by the Greeks. The same holds for the expression ποιεω επι,
“to put on top of”, also used by Hero in Metrica when arithmetical
calculations are expressed in geometrical terms (with or without geometrical
understanding).

Other features of the text may be paraphrases or explanations
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introduced by the Greeks during the reception phase; all other versions
of the problem speak of “the/all four sides” instead of the “perimeter”
(except the ninth-century Jaina mathematician Mahāvı̄ra’s Ganita-sāra-
saṅgraha, which shares other puzzling features and interests with Geometrica
24); nowhere else do we find the suggestive “place outside” (some
Babylonian texts use different explanatory devices), nor a specification that
the outer half of the rectangle representing the four sides is taken away
υπο, “underneath” (by which we are told to turn Figure 1 90° anti-
clockwise). All non-Greek expressions of the tradition use the second person
singular or the imperative in the prescription, as do most of the Geometrica
constituents.

Problem 46 of the same chapter asks for the separation of a circular
diameter, perimeter and area when their sum is given; even this problem
is known from an Old Babylonian text, and recurs in Mahāvı̄ra and in an
Arabic treatise from c. 1200 C.E. Here, however, καθολικως occurs
alongside of παντοτε, “at all times”, used in the same function; separation
is αποδιαστελλω; still other problems use παντος/“always” to express
generality. One of the other treatises brought together in Geometrica (mss.
A+C) uses αει, “always”, in the function of καθολικως, and διαστελλω for
separation; παντοτε is used in two other constituents (chapter 22, amd mss.
S+V). 24.6 uses the purely arithmetical πολλαπλασιοω/“I make multiple”
for multiplication.

The similarities suffice to show that Greek practitioners had encountered
the Near Eastern geometrical tradition and undertaken a genuine though
free translation of some of its material. The divergent ways to express the
same borrowed idea suggest that this translation may have been a repeated
process; in any case, however, the material was paraphrased and digested
before reaching the Byzantine school and copyist-scholars.

6. The circular perimeter

The same process of translation and revision is reflected in one of the
several ways in which the Geometrica-treatises express the circular perimeter
in terms of the diameter. Old Babylonian texts find the perimeter concretely,
by “repeating [the diameter] until 3” (ana 3 esēpum) or by “tripling”
(šullušum); they never employ the usual term for multiplication (našûm),
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although this term is used invariably (often directly afterwards) when the
area is found as 1/12 times the square on the perimeter.

In Metrica I.xxx [Hero 1903: 74], Hero refers to those who take “the
diameter to encompass the triple (τριπλασιος) of the diameter of the circle”,
and in I.xxxi (ibid.) to those who take it instead to be “the triple of the
diameter of the circle, and a 7th part larger”. Both groups, it appears from
the context, are anonymous practitioners active well before Hero’s times;
Hero’s own Archimedean formulation (I.xxvi, [1903, 66]) tells that the
perimeter is found as the seventh part of the diameter times (επι) 22.

This is not significant in itself; if we look at the many formulae for the
same matter in the Geometrica manuscripts, we find Hero’s own formula
expressed in Hero’s way; however, we also find the “triple [τριπλασιον
or τρισσακις] and a seventh part”, but never a multiplication by 3
expressed like other multiplications. Moreover, the triple is always
calculated separately, before the extra 1/7 is found and added. (The same
formulation is used in the spurious proposition 2 of Archimedes’s
Measurement of the circle, but since we know nothing about the origin of
this late insertion it tells us nothing more than the Geometrica, whose
characteristic vocabulary it shares).

A similar formulation is still found in the master builder Mathes
Roriczer’s Geometria deutsch (c. 1488): The perimeter of a circle is found
by drawing the circle thrice, and dividing one of them in 7 parts, of which
one is added to the three circles [Roriczer 1977, 120f.]. There seems to be
no doubt that Greek or Hellenistic practitioners took over the Babylonian
expression, translating very faithfully a term for concrete repetition, and
added a correction in response to Archimedes’s calculation instead of
changing the whole formulation. This formula was then transmitted
through the European Middle Ages – probably together with a very
concrete manual repetition procedure that could stabilize the wording.

7. Elements II – a critique

The kind of “translation” involved in the development of Greek
theoretical geometry is wholly different. We may start by looking at Elements
II.1–10, remembering that the contents of Geometrica establishes beyond
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doubt that the Greeks did know about the Near Eastern tradition – the
manuscripts are of Byzantine date, it is true, but the formulations exclude
a post-classical import.

In symbolic translation (which does not do justice to the text, but cf.
the quotation of II.6 below), the propositions tell the following ( (l,w)
stands for the rectangle contained by l and w):

1. (a,p+q+ +t) = (a,p) + (a,q) + + (a,t).
2. (a) = (a,p) + (a,a–p).
3. (a,a+p) = (a) + (a,p).
4. (a+b) = (a) + (b) + 2 (a,b).
5. (a,b) + ( a–b/2 ) = ( a+b/2 ).
6. (a,a+p) + ( p/2 ) = (a+ p/2 ).
7. (a+p) + (a) = 2 (a+p,a) + (p).
8. 4 (a,p) + (a–p) = (a+p).
9. (a) + (b) = 2[ ( a+b/2 ) + ( b–a/2 )].

10. (a) + (a+p) = 2[ ( p/2 ) + (a+ p/2 )].
If the rectangles and squares are understood as products and the letters
as numbers instead of line segments, these become algebraic identities. This
is why the technique was interpreted as “geometric algebra” by Zeuthen
[1886: 5ff], in agreement with Tannery and with a tradition that can be
followed back at least to Jordanus of Nemore in the early thirteenth
century; and this is why Neugebauer understood the Euclidean theorems
as translations of Babylonian numerical knowledge, duly provided with
proofs in the Greek manner.

The reading of the Babylonian texts as geo-

Figure 2

metric and reasoned though “naive” changes this
relation; As an example we may look at the proof
of II.6, “If a straight line be bisected and a straight
line be added to it in a straight line, the rectangle
contained by the whole with the added straight
line and the added straight line together with the
square on the half is equal to the square on the straight line made up of
the half and the added straight line” [Euclid 1926, 385, trans. Heath]. The
first half of the proof constructs the square on CD, where C is the mid-point
of AB; draws the diagonal DE; draws BG parallel to DF and intersecting
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the diagonal in H; etc. Then it is able to prove the equality of the rectangles
AL and HF, etc.

Euclid’s text does not solve a problem; what it does is to make a
“critique” (in quasi-Kantian sense) of the traditional naive technique,
showing that what was traditionally “seen” to be correct can in fact be
proved according to the best standards of theoretical geometry. But apart
from the insertion of the argument in a deductive structure, where earlier
propositions are made use of, the basic idea of the proof remains the same.

All the propositions have this character. II.1 shows that rectangles can
be cut and pasted; II.2 and 3 treat the particular situation where sides are
subtracted from or added to a square area; II.4 and 7 correspond to the
two identities by which the areas of squares with “almost-round” sides
were calculated since the third millennium, (S+σ) = (S)+ (σ)+2 (S,σ);

(S) = (S–σ)+2 (S,σ)– (σ). II.5 corresponds to the solution of the rectangle
problem A = α, l+w = β (and of the square problem αs–A = β), while II.6
corresponds to the rectangle problem A = α, l+w = β and to the solution
of square problems A±αs = β. II.8 shows that the difference between two
square areas is four times the rectangle contained by the average side and
the semi-difference between the sides, which will have served the solution
of the two-square problems A1–A2 = α, s1±s2 = β (such problems have been
found in Old Babylonian tablets, but without solution; medieval sources
contain the solution); II.9 and 10 correspond to the two-square problems
A1+A2 = α, s1±s2 = β.

The proof ideas of propositions 1 through 7 correspond to what is
known from Babylonian texts and is likely to have followed the practition-
ers’ tradition since the earliest second millennium; the proof idea of II.8
may be old too, but is likely to have been revised (the practical geometers
would probably locate one square concentrically within the other, which
makes the idea more intuitively obvious but complicates the exact
formulation). The proofs of II.9 and 10 are definitely non-Babylonian.
However, the very characteristic diagram used in the proof of II.10 turns
up in one of the components of Geometrica (mss. A+C, 16.44, [Hero 1912,
330f.]) though serving there only as a pretext for an area calculation. Even
the proof ideas of II.9 and 10 are thus likely to have been borrowed from
practitioners.
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Propositions 4–7 are used later in the Elements (in particular in Book
X), but the others are not: the knowledge they contain is considered so
familiar that there is no reason to mention it explicitly once its reliability
has been established [cf. Mueller 1981, 301]. Elements II.1–10 is evidently
not meant to open new land but to go carefully over and thus consolidate
the well-known (the same appears to hold for the rest of the book, but this
requires further arguments) – to be a “critique of mensurational reason”,
showing why and under which conditions (e.g., really right angles) the
traditional ways could be accepted. This interpretation is corroborated by
the curious fact that the proofs of the single propositions are independent,
even though some of them could easily be proved by means of the
preceding – 2 and 3 are special cases of 1, 6 coincides with 5 if only b =
a+p; that each proposition gets its own proof shows that not only the
knowledge contained in the theorems but also the traditional heuristic
proofs were meant to be consolidated by theoretical critique.

On the whole, even Neugebauer’s thesis is hence consolidated though
in revised shape. First of all, it is not the contents of the Babylonian clay
tablets which is directly translated (which was never Neugebauer’s idea –
in [1963, 530] he argues that the Babylonian heritage had become “common
mathematical knowledge all over the ancient Near East”). Next, there is
no “translation” from numbers to geometry, what we have traced is a
transfer from the “naive” reason of everyday to the level of deductive and
axiomatic theory. The moving force is no “foundation crisis” but the general
philosophical drive of Greek thought: “not to tell us what to do, but to
show why what we are doing anyway is in accord with proper principles”,
as Joan Robinson formulated the task of the economist [1964, 25]. This
transfer involves not only a change of proof style and of formulations –
one may compare the wording of Elements II.6 with a formulation referring
to the area and the sides of a rectangle; it also changes the aim from the
finding of unknown quantities (and, on the level of general aims, to train
and display computational virtuosity) to the search for explanations or
causes, in the idiom of Aristotelian philosophy (and, on the general level,
search for and display of wisdom).

As to the time of the transfer, Euclid is not responsible; Elements II is
certainly an older treatise, even though Euclid may have edited it to an
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unknown degree. What little we know about the geometry of Hippocrates
of Chios and Theodoros shows that the import will have taken place before
their times (not necessarily the reformulation as critique); coins from
Aegina, which in the fifth century had carried a “naive” geometric diagram,
exhibit the diagram of II.4 (including a “critical” diagonal) from 404 B.C.
onward, demonstrating that the topic was hot by then [Artmann 1988, 11].
The most likely epoch for the creation of the Elements-II theory is the mid-
to late fifth century B.C.

Some of the traditional riddles are not reflected in Elements II even
though they occur in Old Babylonian as well as Arabic sources: the
rectangular problems A+(l w) = α, l±w = β; A = α, d = β, and the circular
problem d+p+A = α. This has its good reasons: the three rectangular
problems were always reduced to the basic types A = α, l±w = β, and thus
in need of no particular consolidation; the circular problem was excluded
in the absence of a known ratio between d and p.

8. Intermediate positions

Less radical is the “translation” contained in Euclid’s Data. Data 84 does
not find the sides of a rectangle from their difference and the area, it is true;
but it shows that if the difference and the area are given, then even the
sides themselves are given. In other words, it shifts the interest from
solution to solvability; its relation to the old rectangle riddle is analogous
to the relation between elementary algebraic theory and the practical
solution of equations. The interest in solvability as a theoretical problem,
however, is generalized and applied to questions far removed from what
the Babylonians and later practitioners had imagined. This general
investigation is hence no longer to be understood as “translation”, instead
it is another reflection of the specific character of the Greek mathematical
enterprise; it may be compared to that general investigation of the classes
of irrational magnitudes and their mutual relations (Elements X) which grew
out of the discovery of irrational ratios.

In Book I of Diophantos’s Arithmetica, a few propositions repeat the
old riddles (evidently in numerical, not in geometrical formulation, and
thus in the reverse translation of that conjectured by Neugebauer): A =

- 12 -



α, l±w = β (Propositions 27 and 30); A1±A2 = α, s1+s2 = β (Propositions 28
and 29). Here, the immediate interest coincides with that of the
practitioners: To find the numerical solution. In so far, we may speak of
a genuine though free (and interpretive) translation. In contrast to what
we find in Babylonian sources, however, theoretical reflection is also made
explicit, not only in the sense that the problem is formulated both in general
terms and in a numerical example used for the solution (general decriptions
are attempted without much resulting clarity in some Old Babylonian texts
on the interface between practitioners’ and school culture, and with better
outcome in a few late Babylonian tablets) but also by the formulation of
diorisms telling the conditions for solvability; interestingly, these conditions
are then told to be πλασματικος, which may (but need not) mean that they
can be seen in a diagram, a πλασμα (which indeed they can, namely in
the diagram that follows from the Babylonian texts) – cf. the discussion
in [Høyrup 1990a, 349f.].

9. Dýnamis – a loan translation?

Diophantos was not the founder of Greek algebra; for one thing, he
tells that “it has been approved” (εδοκιμασθη) to designate the second
power of the unknown number as dýnamis (δυνaμις), thus making it an
“element of arithmetical theory” (στοιχειον της αριθμετικης θεωριας), i.e.,
algebra as treated by Diophantos [Diophantus 1893: I, 4]. This, and various
other agreements, shows us that diverse passages in Plato’s Republic refer
to a second- and third-degree calculators’ algebra, and that even this early
algebra used the term dýnamis for the second power [cf. Høyrup 1990b,
368f.].

Other passages in Plato, Aristotle, the Hippocrates fragment, and the
Elements (etc.) shows the dýnamis to be also a geometric term; its meaning
has been much discussed, since some texts seem to understand it as a
square and others as a square-root or the side of a square (and Plato’s
Theaetetos 147C7–148D7 mixes both senses). Complete analysis of the
evidence [see Høyrup 1990b] shows the meaning to be a square para-
metrized by and hence tendentially identified with its side – a square being
its side and possessing its area, whereas the τετραγωνον-square is its area
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and has its side (in agreement with Euclid’s definition of a “figure” as that
which is contained by one or more boundaries).

In Babylonian mathematics, a similar concept is found: the mithartum,
etymologically something like “a situation characterized by the confronta-
tion of equals”, is exactly this square “being” its side and having an area.
This analogy does not necessarily entail that the term be borrowed –
however strange the idea seems to us (and to later Greek geometers, who
tended to eliminate the term), both mathematical cultures might have had
a concept of the square referring primarily to the frame made up of equal
sides. As pointed out by Szabó [1969, 46f.], however, both dýnamis and the
verb dýnasthai (even this used in geometry) have connotations of equi-
valence and commercial value, together with the basic denotation of
physical strength; exactly the same range of de- and connotations belongs
with the verb mahārum, from which mithartum is derived. This still
constitutes no proof that the dynamis be a calque of the Babylonian term
(or rather, of some corresponding Aramaic term used by Near Eastern
mathematical practitioners around 500 B.C.); but it strengthens the
hypothesis, and goes well together with the evidence for a transfer of that
very quasi-algebraic technique in which the Babylonian word had served.

10. Egypt and Phoenicia

Nothing in the above supports Herodotos’s claim that Greek geometry
was derived from the technique of Egyptian “rope stretchers”. However,
we should remember, firstly, that the area geometry found in Elements II
(and X, and used in Apollonios’s Conics, etc.) is not the whole of Greek
geometry; secondly, that the Egyptian mathematical papyri inform us about
Egyptian Middle Kingdom area computation, but not about mid-first
millennium mensurational techniques, which is a very different matter. Our
sources thus do not permit an informed opinion about Herodotos’s claim.

Proclos’s idea that “precise understanding of numbers” come from the
Phoenicians may astonish, since the Greek notation for fractions is
notoriously borrowed from Egypt, not from the Phoenician traders; but
if we remember that Diophantos characterizes what he does as arithmetic,
i.e., science of numbers, Proclos may be right, although in a sense that has
not been suspected: the Greek calculators’ algebra, indeed, is indubitably
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derived from the lore of the Near East, and probably from contacts
precisely with the Syrian coast land – i.e., Phoenicia.

Jens Høyrup
23 July 1996

Slightly corrected 4 January 1998
Further minor correction 19 July 1999
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